Example #2: Designing A Spiral-Curve-Spiral Combination

Determine the total length of the SCS combination based on the information provided below:

$$\Delta_c = 37.5231^{\circ}$$
 R= 2000 ft

Road is a rural principal arterial

$$ADT = 1500$$

Posted speed = 50 mph

Rolling terrain, 12-ft lane highway

Using formula: $L_{s,ft} = 1.6 \text{ V}_{mph}^3/R_{ft}$ Calculate $L_{s,ft}$ $L_{s,ft} = 1.6(50)^3/2000$

$$L_{s,ft} = 100 \text{ ft}$$

Using MoDOT Standard Drawing 203.20 page 2/5 Select $L_{s,ft}$ from table: Emax=8% , 50mph, 24ft $L_{s,ft}$ = 122 ft

DESIGN SPEED	30	M.P.	н. О	R LES	SS	40 M.P.H.						50 M.P.H.				60 M.P.H.				70	н.	
NORMAL SURFACE WIDTH			20'	22'	24'			20'	22'	24'			20'	22'	24'			22'	24'			24'
RADIUS (FEET)	e%	L		W		e%	L		W		e%	L		W		e%	L	٧	V	e%	L	W
17000	NC	0	0	0	0	NC	0	0	0	0	NC	0	0	0	0	NC	0	0	0	NC	0	0
14000	NC	0	0	0	0	NC	0	0	0	0	NC	0	0	0	0	NC	0	0	0	RC	60	0
12000	NC	0	0	0	0	NC	0	0	0	0	NC	0	0	0	0	NC	0	0	0	RC	60	0
10000	NC	0	0	0	0	NC	0	0	0	0	NC	0	0	0	0	RC	53	0	0	2.1	63	0
8000	NC	0	0	0	0	NC	0	0	0	0	NC	0	0	0	0	2.1	56	0	0	2.6	78	0
6000	NC	0	0	0	0	NC	0	0	0	0	RC	48	0	0	0	2.7	72	0	0	3.4	102	0
5000	NC	0	0	0	0	RC	41	0	0	0	2.4	58	2.0	0	0	3.2	85	0	0	4.1	123	0
4000	NC	0	0	0	0	RC	41	2.0	0	0	2.9	70	2.0	0	0	3.9	104	0	0	4.9	147	0
3500	NC	0	0	0	0	2.3	48	2.0	0	0	3.2	77	2.0	0	0	4.4	117	0	0	5.5	165	0
3000	RC	36	2.0	0	0	2.6	54	2.0	0	0	3.7	89	2.5	0	0	5.0	133	0	0	6.3	189	0
2500	RC	36	2.0	0	0	3.0	62	2.5	0	0	4.3	103	2.5	0	0	5.7	152	0	0	7.2	216	0
2000	2.4	44	2.5	0	0	3.7	77	2.5	0	0	5.1	122	2.5	0	0	6.6	176		0	7.9		0
1800	2.6	47	2.5	U	0	4.0	83	3.0	0	0	5.5	132	3.0	2.0	0	7.1	189	2.0	0	MIN.	RAD	IUS =
1600	2.9	53	2.5	0	0	4.4	91	3.0	0	0	5.9		3.0		0	7.5	200	2.0	0			
1400	3.2	58	3.0	0	0	4.8	99	3.0		0	6.4		3.0		0	7.8	208	2.5	0			
1200	3.6	65	3.0	2.0	0	5.4	112	3.5		0	7.0		3.5		0	MIN.	RAD	IUS =	= 120	5′		
1000	4.2	76	3.5	2.5	0	6.0	124	3.5		0	7.6			3.0	2.0							
900	4.5	82	3.5	2.5	0	6.4	132	4.0			7.8			3.5								
800	4.9	89	4.0	3.0		6.8	141	4.0			8.0			3.5								
700	5.3	96		3.0		7.2	-	4.5			M	IN. R	AD IUS	= 75	50'							
600	5.8	105		3.5		7.6																
500	6.4	116	5.5	4.5		8.0		5.5														
450	6.7	122	5.5	4.5		MI	N. R	ADIUS	= 46	55′												
400	7.1	129	6.0	5.0																		
350	7.5	136		6.0																		
300	7.8	142	7.5	6.5																		
250	8.0	145	9.0	8.0	7.0																	

From AASHTO Values for Design Elements Related to Design Speed & Horizontal Curvature where e_{max}=8% (Exhibit 3-23)

$$L_{\rm s} = 168 \; {\rm ft}$$

